更多>>精华博文推荐
更多>>人气最旺专家

司雪静

领域:药都在线

介绍:而董力和盛一伦的“生死一舞”也引起网友热议。...

吴越

领域:爱丽婚嫁网

介绍:随着RFID技术在图书馆中的应用,逐渐进入到实践阶段,RFID电子标签将逐渐取代纸质条码。w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌

利来国际w66利来国际w66
本站新公告w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌
xtz | 2019-01-18 | 阅读(562) | 评论(395)
用户账户一经转让,该账户项下权利义务一并转移。【阅读全文】
w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌
coa | 2019-01-18 | 阅读(394) | 评论(466)
中国缸油人学(华东)硕士学位论文第一章前言1.1论文研究的目的及意义当今世界油气勘探与开发主要围绕两个主题:一是提高油气探明率及勘探效益:二是提高油气采收率及开发效益。【阅读全文】
3fr | 2019-01-18 | 阅读(674) | 评论(592)
”24小时的紧急排舞中,秦岚和董洁也没忘了彼此探个班,给对方加油打气。【阅读全文】
vnp | 2019-01-18 | 阅读(827) | 评论(998)
”观众get不到兴奋点,“吃力不讨好”的尴尬有人说,《幻乐之城》包含杂与精,“杂”指涉及电影、戏剧等多个艺术门类,“精”意味着节目的精致、内容的精炼、画面的精修,这是一场电视工业的新革命。【阅读全文】
2jp | 2019-01-18 | 阅读(878) | 评论(983)
基本格式1、标题2、正文开头:概述情况,总体评价;提纲挈领,总括全文。【阅读全文】
r2g | 2019-01-17 | 阅读(749) | 评论(353)
为了尽快适应新的工作岗位,我自觉加强学习,虚心求教释惑,不断理清工作思路,总结工作方法,现已基本胜任本职。【阅读全文】
tz3 | 2019-01-17 | 阅读(5) | 评论(425)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
b3g | 2019-01-17 | 阅读(119) | 评论(546)
内因常包括沉积微相、储层的非均质性、微构造和封闭断层、后期采油形成的优势通道、流体性质等因素。【阅读全文】
w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌,w66利来国际老牌
fm1 | 2019-01-17 | 阅读(810) | 评论(758)
中国林科院林产化学工业研究所在林业部的支持下先后承担了国家“八五’’和“九五’’关键技术攻关任务和UNDP资助的“发展中国高得率制浆技术研究’’等项目,引进了世界先进水平的高得率制浆整套中试设备,并系统研究了速生杨、桦、桉等阔叶材及杉木、马尾松等速生针叶材制浆适宜性能,适宜的制高得率浆工艺技术,漂白工艺及相关废水处理技术等,对林业系统发展高得率浆生产在技术上进行了准备。【阅读全文】
xdl | 2019-01-16 | 阅读(703) | 评论(463)
确保周边环境达到司要求的标准。【阅读全文】
2co | 2019-01-16 | 阅读(378) | 评论(100)
影响:取代了传统自由放任经济理论,成为各资本主义国家制定经济政策的主要依据;有利于资本主义国家经济的发展;(1)要大胆吸收资本主义先进文明成果;(2)要开拓进取,勇于创新,深化改革(3)将市场机制和政府干预有机统一(4)要关注弱势群体利益,建立健全社会保障体系;(5)注意化解社会矛盾,努力建设和谐社会。【阅读全文】
q2b | 2019-01-16 | 阅读(163) | 评论(840)
第四单元发展社会主义市场经济;;考点突破二:市场调节固有的弊端;考点突破三:整顿和规范市场秩序;如何规范市场秩序;;热点链接:我国创新和完善宏观调控方式,先后提出区间调控、定向调控精准调控、相机调控,促进经济社会发展。【阅读全文】
1kg | 2019-01-16 | 阅读(331) | 评论(368)
今年10月30日,韩国最高法院判决新日铁住金(日本钢铁公司)向二战期间被强征的4名韩国劳工每人赔偿1亿韩元(约合61万元人民币)。【阅读全文】
e1o | 2019-01-15 | 阅读(141) | 评论(681)
峰会期间,安全狗作为峰会的信息化支撑与技术保障单位之一,派驻了专业技术人员,并依托自身强大的云安全产品体系,和专业的技术能力与职业精神,全程护航峰会的举行,圆满完成了此次峰会的网络安全保障工作!【阅读全文】
ar1 | 2019-01-15 | 阅读(156) | 评论(22)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
共5页

友情链接,当前时间:2019-01-18

利来娱乐在线平台 利来国际AG旗舰店 w66利来国际手机app w66利来娱乐 利来国际官方网站
利来国际w66客服 w66利来 利来国际 利来娱乐帐户
利来国际w66手机版 利来国际公司 利来w66 利来国际最给利的老牌 利来娱乐国际最给利老牌网站
利来娱乐 w66利来娱乐公司 w66.cm利来国际 利来娱乐网 利来国际w66利来国际w66
黑龙江省| 监利县| 宁城县| 大连市| 惠安县| 寿宁县| 阿合奇县| 长子县| 大厂| 金门县| 信宜市| 满洲里市| 平罗县| 北宁市| 黔南| 鄯善县| 陵水| 都江堰市| 通榆县| 金堂县| 和静县| 敖汉旗| 临桂县| 通化市| 海丰县| 阿克陶县| 洪江市| 磴口县| 上栗县| 克东县| 禹城市| 阳山县| 蕉岭县| 乌兰察布市| 武冈市| 莱芜市| 东兰县| 长阳| 克什克腾旗| 车致| 杭锦旗| http://m.55370238.cn http://m.93203507.cn http://m.34617067.cn http://m.10066087.cn http://m.13739928.cn http://m.57020408.cn